Mark Scheme (Results)

January 2020

Pearson Edexcel International GCSE
In Further Pure Mathematics (4PM1)
Paper 02

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code 4PM1_02_2001_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks - can only be awarded when relevant M marks have been gained
- B marks: unconditional accuracy marks (independent of M marks)

- Abbreviations

-

cao - correct answer only
cso - correct solution only
ft - follow through

- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission

- No working

If no working is shown then correct answers may score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question: eg. uses 252 instead of 255; follow through their working and deduct 2A marks from any gained provided the work has not been simplified. (Do not deduct any M marks gained.)
If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used

Examiners should send any instance of a suspected misread to review (but see above for simple misreads).

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q) \text {, where }|p q|=|c| \text { leading to } x=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q) \text { where }|p q|=|c| \text { and }|m n|=|a| \text { leading to } x=\ldots .
\end{aligned}
$$

2. Formula:

Attempt to use the correct formula (shown explicitly or implied by working) with values for a, b and c, leading to $x=\ldots$.

3. Completing the square:

$$
x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0 \quad \text { leading to } x=\ldots
$$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration:

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula:

Generally, the method mark is gained by either
quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values
or, where the formula is not quoted, the method mark can be gained by implication from the substitution of correct values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers may be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

International GCSE Further Pure Mathematics - Paper 2 mark scheme

Question Number	Scheme	Marks
1	$\frac{\mathrm{d} s}{\mathrm{~d} t}=3 t^{2}+8 t-27=8$ $3 t^{2}+8 t-35(=0)$ $(3 t-7)(t+5)=0$ $t=\frac{7}{3}$	M1
M1	Attempt the differentiation and equate their result to 8. Power of at least one term to decrease and none to increase' Obtain the correct 3TQ. Terms can be in any order and $=0$ may be omitted. Attempt to solve their 3TQ by any valid method. Must reach $t=\ldots$ M1 For $t=\frac{7}{3}$ (negative answer must be omitted or eliminated) or $t=2.33$ or better	
A1cao	[4]	

Question Number	Scheme	Marks
2(a)	$x \leqslant-1$	B1 (1)
(b)	$8 x^{2}+10 x-3(<0)$	
	$(4 x-1)(2 x+3)(<0)$	M1
	$x=\frac{1}{4} \quad x=-\frac{3}{2}$	A1A1
	$-\frac{3}{2}<x<\frac{1}{4}$	A1ft (4)
(c)	$-\frac{3}{2}<x \leqslant-1$	B1 (1)
		[6]
(a)		
B1	For $x \leqslant-1$	
(b)	Accept decimals in (b) and (c)	
NB	The first 3 marks are for finding the critical values. Allow with $<$ or $=$ used.	
M1	Attempt to obtain the critical values by solving their 3TQ by any valid method.	
A1		
A1	Second CV correct. Award these 2 marks if correct CVs seen in an inequality. Inequality formed to indicate the values between their CVs. Must use $<$ (Can be written in set language).	
A1ft		
NB	If CVs incorrect and only shown in the inequality, award $0 / 4$ if no working shown for solving their 3TQ: if working shown M1A0A0A1 is available.	
(c)		
B1	For $-\frac{3}{2}<x \leqslant-1$ (no ft)	

Question Number	Scheme	Marks	
4(a)	$\begin{aligned} & \overrightarrow{D C}=(11 \mathbf{i}-p \mathbf{j})-(4 \mathbf{i}-2 p \mathbf{j})=7 \mathbf{i}+p \mathbf{j}=\overrightarrow{A B} \\ & \text { OR: } \overrightarrow{B C}=(11 \mathbf{i}-p \mathbf{j})-(7 \mathbf{i}+p \mathbf{j})=4 \mathbf{i}-2 p \mathbf{j}=\overrightarrow{A D} \end{aligned}$	M1A	
	Parallel and equal in length \therefore Parallelogram	A1cso	
(b)	$\overrightarrow{B D}=(4 \mathbf{i}-2 p \mathbf{j})-(7 \mathbf{i}+p \mathbf{j})=-3 \mathbf{i}-3 p \mathbf{j} \quad($ or $3(-\mathbf{i}-p \mathbf{j})$ oe	B1	
	$\sqrt{9+(3 p)^{2}}=3 \sqrt{10}\left(\Rightarrow 9+9 p^{2}=90\right)$	M1	
	$p= \pm 3$		
(c)	$(\pm) \frac{1}{3 \sqrt{10}}(-3 \mathbf{i}-9 \mathbf{j})$ oe	B1ft	
			[7]
(a)	Accept column vectors throughout.		
	unu una		
M1	Attempt $\pm D C$ or $\pm B C$ using the difference of 2 appropriate vectors in component form.		
A1			
Alcso	Suitable conclusion with reason from correct working.		
	One pair of vectors only needed if reason is "parallel and equal". Both pairs needed if reason is "2 pairs of sides parallel/equal".		
(b)			
M1	For a correct $\stackrel{\text { unu }}{B D}$ or $\stackrel{\text { unu }}{D B}$. No simplification needed.		
	Use the given length of $\stackrel{\text { unu }}{B D}$ with the length of their ${ }^{\text {unum }}$		
A1	Obtain correct values for p. Both needed.		
(c)			
B1ft	Use their positive value for p to obtain a unit vector (no simplification needed)		

Question Number	Scheme	Marks
(b)	Algebraic integration must be seen - otherwise no marks. The first 4 marks can be awarded with or without π provided the work is consistent. The first 3 marks can be awarded if no limits are shown.	
M1	Correct integral, with or without π. Limits may be missing - ignore any shown.	
A1	Square the bracket correctly.	
dM1	Attempt the integration of their integrand. The power of at least one term should increase and no power should decrease. Ignore limits.	
A1	Substitute the correct limits and obtain $\frac{153}{160}$ or $\frac{153 \pi}{160}(0.95625($ pi) $)$	
ddM1	Subtract the volume of the cone from their previous answer. Both terms to include π A1cao Correct final answer (0.675pi)	
ALT:	See above for general instructions re integration	
M1	Integral must be the difference of 2 squared terms	
A1	Correct integrand after squaring, need not be simplified	
dM1	Attempt the integration of their integrand. The power of at least one term should increase	
and no power should decrease.	Correct result	
A1	Substitute their limits	
d1cao	Correct final answer.	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline 8 \& \[
\begin{aligned}
\& y=\mathrm{e}^{3 x} \sin 2 x \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \mathrm{e}^{3 x} \cos 2 x+3 \mathrm{e}^{3 x} \sin 2 x \\
\& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\left(-4 \mathrm{e}^{3 x} \sin 2 x+6 \mathrm{e}^{3 x} \cos 2 x\right)+\left(6 \mathrm{e}^{3 x} \cos 2 x+9 \mathrm{e}^{3 x} \sin 2 x\right) \\
\& =12 \mathrm{e}^{3 x} \cos 2 x+5 \mathrm{e}^{3 x} \sin 2 x \\
\& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+13 y \\
\& =12 \mathrm{e}^{3 x} \cos 2 x+5 \mathrm{e}^{3 x} \sin 2 x-6\left(2 \mathrm{e}^{3 x} \cos 2 x+3 \mathrm{e}^{3 x} \sin 2 x\right)+13 \mathrm{e}^{3 x} \sin 2 x \\
\& =12 \mathrm{e}^{3 x} \cos 2 x+5 \mathrm{e}^{3 x} \sin 2 x-12 \mathrm{e}^{3 x} \cos 2 x-18 \mathrm{e}^{3 x} \sin 2 x+13 \mathrm{e}^{3 x} \sin 2 x \\
\& =0
\end{aligned}
\] \& \begin{tabular}{l}
M1A1 \\
M1A1A1 \\
dM1 \\
ddM1 \\
A1cso \\
[8]
\end{tabular} \\
\hline ALT \& \[
\begin{aligned}
\& \frac{\mathrm{d} y}{\mathrm{~d} x}=2 \mathrm{e}^{3 x} \cos 2 x+3 \mathrm{e}^{3 x} \sin 2 x \\
\& \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \mathrm{e}^{3 x} \cos 2 x+3 y \\
\& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\left(-4 \mathrm{e}^{3 x} \sin 2 x+6 \mathrm{e}^{3 x} \cos 2 x\right)+3 \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
\& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+13 y=\left(-4 \mathrm{e}^{3 x} \sin 2 x+6 \mathrm{e}^{3 x} \cos 2 x+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+13 y \\
\& =-13 y+6 \mathrm{e}^{3 x} \cos 2 x+9 \mathrm{e}^{3 x} \sin 2 x-3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+13 y \\
\& =-13 y+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+13 y=0 *
\end{aligned}
\] \& \begin{tabular}{l}
M1A1 \\
M1A1A1 \\
dM1 \\
ddM1A1cso \\
[8]
\end{tabular} \\
\hline M1
A1
M1
A1 A1
dM1

ddM1

A1cso \& \multicolumn{2}{|l|}{| Attempt the product rule. 2 terms of the form $\pm k \mathrm{e}^{3 x} \cos 2 x$ and $\pm l \mathrm{e}^{3 x} \sin 2 x$ with $k=1$ or 2 and $l=1$ or 3 |
| :--- |
| Fully correct first derivative |
| Attempt the second derivative using the product rule correctly on either term. Must have at least one of the terms in the first derivative fully correct. |
| A1 for each fully correct bracket |
| Substitute their derivatives and y in $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+13 y$ Depends on both previous M marks |
| This and the following M mark may be awarded together. |
| Remove the brackets |
| Reach " 0 " from fully correct work. |}

\hline | ALT |
| :--- |
| M1A1 |
| M1 |
| A1A1 |
| dM1 |
| ddM1 |
| Alcso | \& \multicolumn{2}{|l|}{| As above |
| :--- |
| Replace sin term with a y term and attempt the second derivative using the product rule on first term. |
| A1 Correct bracket A1 Correct second term |
| As above |
| Obtain an expression which is either all derivatives plus y terms or all trig terms Reach " 0 " from fully correct work |}

\hline
\end{tabular}

(a)(i)M1	Set $x=0$ in the curve equation and equate result to 2. Obtain a value for p.
Alcso	Correct value of p obtained from a correct equation.
(ii)M1	Attempt the quotient rule. (formula is given on formula page). Denominator must be
	$(x-1)^{2}$. Numerator to be $q(x-1)-(q x-2)$ or $(q x-2)-q(x-1)$ Must use $\boldsymbol{p}=\mathbf{1}$ now or later.
A1	Fully correct derivative
ALT	Use product rule: $\frac{\mathrm{d} y}{\mathrm{~d} x}=q(x-1)^{-1}-(q x-2)(x-1)^{-2}$
	M1 for attempt with 2 terms similar to above, either term to be correct
A1 Both terms correct	
M1	Set $x=0$ in their derivative and equate to -1
A1	Correct equation
A1	$q=3$

Question Number	Scheme Marks
(b)	No value for \boldsymbol{q} : B 0 B 1 B 0 B 1 B 1 available. Incorrect \boldsymbol{q} : B 1 B 1 B 0 B 1 B 1 available.
B1ft	Equations of asymptotes seen or lines parallel to axes passing through $x=1, y=3$ drawn. $y=3$ or their q. Must have a value for \boldsymbol{q}.
B1ft	Coordinates of crossing points seen explicitly or marked on the sketch. Must have $y=2$; may have $x=2 / q$ (value for q not needed)
B1	Two branches in the correct "quadrants" Must have $q=3$ for this mark. Asymptotes drawn.
B1ft	There must be at least one branch of the curve drawn and 2 asymptotes drawn and labelled on the diagram by showing the coords of the points where they cross the axes or with their equations. The curve must not touch (or cross) either asymptote. ft their asymptotes, inc $\boldsymbol{y}=\boldsymbol{q}$
B1ft (c)	Both crossing points clearly marked on their diagram. ft their crossing points .
M1	Eliminate y between the line and the curve equation. May use q or their value for q
M1	Obtain a 2 or 3 term quadratic. May use q or their value for q.
dM1	Solve their equation to obtain 1 or 2 values of x Depends on both M marks above.
Alcao	$x=2$ from a correct equation. If $x=0$ is seen it must be clear that $x=2$ is the only answer If x is eliminated: M1 elimination M1 obtain quadratic in y M1 solve for y A1 complete to a single value of x

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme Marks

\hline 10 \& $$
\begin{aligned}
& \frac{\mathrm{d} V}{\mathrm{~d} t}=40\left(\mathrm{~cm}^{3} / \mathrm{s}\right) \\
& A=4 \pi r^{2} \quad \frac{\mathrm{~d} A}{\mathrm{~d} r}=8 \pi r \\
& V=\frac{4}{3} \pi r^{3} \quad \frac{\mathrm{~d} V}{\mathrm{~d} r}=4 \pi r^{2} \\
& \frac{\mathrm{~d} A}{\mathrm{~d} t}=\frac{\mathrm{d} A}{\mathrm{~d} r} \times \frac{\mathrm{d} r}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t},=8 \pi r \times \frac{1}{4 \pi r^{2}} \times 40 \quad\left(=\frac{80}{r}\right) \\
& r=4 \text { so } \frac{80}{4}=20\left(\mathrm{~cm}^{2} / \mathrm{s}\right)
\end{aligned}
$$

\hline B1
M1
A1
M1

A1

M1 \& | Any letters can be used for volume and area, inc $S A$ for area, but their choice must be used consistently. |
| :--- |
| State or use $\frac{\mathrm{d} V}{\mathrm{~d} t}=40\left(\mathrm{~cm}^{3} / \mathrm{s}\right) \quad$ (units not needed) |
| Attempt to differentiate $4 \pi r^{2}$ with respect to r (Formula for area of sphere is given on formula page) |
| Correct derivative $=\mathrm{d} A / \mathrm{d} t$ |
| Attempt to differentiate $\frac{4}{3} \pi r^{3}$ with respect to r (Formula for volume of sphere is given on formula page) |
| Correct derivative $=\mathrm{d} A / \mathrm{d} t$ |
| Show (or use) a useful chain rule. Terms can be in any order as long as it is possible to obtain $\mathrm{d} A / \mathrm{d} t$ from it. OR Use chain rule twice to obtain an expression from which $\mathrm{d} A / \mathrm{d} t$ could be obtained. |
| Substitute their expressions for the 3 derivatives in their chain rule. Need not be simplified. |
| Use the resulting expression(s) with $r=4$ to obtain a value for $\mathrm{d} A / \mathrm{d} t$ All previous M marks needed. |
| Correct value, units may be missing. Solution must be correct. |

\hline
\end{tabular}

Question Number	Scheme	Marks
$11(a)$ (b)	$\begin{aligned} & (3 \sin A \cos B-3 \cos A \sin B)=(\sin A \cos B+\cos A \sin B) \\ & 2 \sin A \cos B=4 \cos A \sin B \\ & \rightarrow \frac{\sin A}{\cos A}=2 \frac{\sin B}{\cos B} \\ & \tan A=2 \tan B \quad k=2 \\ & \frac{\left(\cos ^{4} \theta-\sin ^{4} \theta\right)}{\cos ^{2} \theta}=\frac{\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}{\cos ^{2} \theta} \\ & =\frac{\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}{\cos ^{2} \theta} \\ & =1-\tan ^{2} \theta \quad * \end{aligned}$	M1 M1 M1 A1 M1 M1 A1 cso
ALT 1	$\begin{aligned} & 1-\tan ^{2} \theta=1-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta} \\ & =\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta} \times\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\ & =\frac{\cos ^{4} \theta-\sin ^{4} \theta}{\cos ^{2} \theta} \end{aligned}$	M1 M1 A1
ALT 2	$\begin{aligned} & \frac{\cos ^{4} \theta-\sin ^{4} \theta}{\cos ^{2} \theta}=\cos ^{2} \theta-\frac{\sin ^{4} \theta}{\cos ^{2} \theta}=\cos ^{2} \theta-\tan ^{2} \theta \sin ^{2} \theta \\ & =\cos ^{2} \theta-\tan ^{2} \theta\left(1-\cos ^{2} \theta\right) \\ & =\cos ^{2} \theta-\tan ^{2} \theta+\sin ^{2} \theta=1-\tan ^{2} \theta \end{aligned}$	M1 Eliminate $4^{\text {th }}$ powers M1 Eliminate $\sin ^{2}$ A1
(c)(i)	$\begin{aligned} & \cos (45-30) \text { or } \cos (60-45)=\frac{1}{2} \times \frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} \\ & =\frac{\sqrt{2}}{4}+\frac{\sqrt{6}}{4}=\frac{\sqrt{2}+\sqrt{6}}{4} * \end{aligned}$	M1 A1cso (2)
ALT	By using double angle formula: $\cos ^{2} 15^{\circ}=\frac{1}{2}\left(1+\cos 30^{\circ}\right)=\frac{1}{2}\left(1+\frac{\sqrt{3}}{2}\right)$ Leading to the given answer. $\cos 15^{\circ}=\sqrt{\left(\frac{2+\sqrt{3}}{4}\right)}$ or $\frac{\sqrt{2+\sqrt{3}}}{2}$ must be seen.	M1 A1

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

